Design of Asymptotically Stable Walking for a 5-Link Planar Biped Walker via Optimization
نویسندگان
چکیده
Closed-loop, asymptotically stable walking motions are designed for a 5-link, planar bipedal robot model with one degree of underactuation. Parameter optimization is applied to the hybrid zero dynamics, a 1-DOF invariant subdynamics of the full robot model, in order to create asymptotically stable orbits. Tuning the dynamics of this 1 DOF subsystem via optimization is interesting because asymptotically stable orbits of the zero dynamics correspond to asymptotically stabilizable orbits of the full hybrid model of the walker. The optimization process uses a sequential quadratic programming (SQP) algorithm and is able to satisfy kinematic and dynamic constraints while approximately minimizing energy consumption and ensuring stability. This is in contrast with traditional approaches to the design of walking controllers where approximately optimal walking (time-) trajectories are derived and then enforced on the robot using a trajectory tracking controller.
منابع مشابه
From Passive Dynamic Walking to Passive Turning of Biped walker
Dynamically stable biped robots mimicking human locomotion have received significant attention over the last few decades. Formerly, the existence of stable periodic gaits for straight walking of passive biped walkers was well known and investigated as the notion of passive dynamic walking. This study is aimed to elaborate this notion in the case of three dimensional (3D) walking and extend it f...
متن کاملSequential Composition of Walking Motions for a 5-Link Planar Biped Walker
Work by the authors published elsewhere addressed the problem of designing controllers that induce exponentially stable, periodic walking motions at a given fixed speed for a 5-link, planar biped robot with one degree of underactuation in single support. The key technical tool was the hybrid zero dynamics, a 1-DOF invariant subdynamics of the full robot model. Further exploiting the features of...
متن کاملHybrid zero dynamics of planar biped walkers
Planar, underactuated, biped walkers form an important domain of applications for hybrid dynamical systems. This paper presents the design of exponentially stable walking controllers for general planar bipedal systems that have one degree of freedom greater than the number of available actuators. The within-step control action creates an attracting invariant set—a two dimensional zero dynamics ...
متن کاملEnergy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملToward a Coherent Framework for the Control of Planar Biped Locomotion
Toward a Coherent Framework for the Control of Planar Biped Locomotion by Eric R. Westervelt Co-Chairs: Jessy W. Grizzle and Daniel E. Koditschek Planar, underactuated, biped walkers form an important domain of application for hybrid dynamical systems. This dissertation presents the design of controllers that induce exponentially stable dynamic walking for general planar biped robots that have ...
متن کامل